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Abstract

A significant gap remains between today’s visual pattern

recognition models and human-level visual cognition espe-

cially when it comes to few-shot learning and compositional

reasoning of novel concepts. We introduce Bongard-HOI,

a new visual reasoning benchmark that focuses on compo-

sitional learning of human-object interactions (HOIs) from

natural images. It is inspired by two desirable characteris-

tics from the classical Bongard problems (BPs): 1) few-shot

concept learning, and 2) context-dependent reasoning. We

carefully curate the few-shot instances with hard negatives,

where positive and negative images only disagree on ac-

tion labels, making mere recognition of object categories

insufficient to complete our benchmarks. We also design

multiple test sets to systematically study the generalization

of visual learning models, where we vary the overlap of

the HOI concepts between the training and test sets of few-

shot instances, from partial to no overlaps. Bongard-HOI

presents a substantial challenge to today’s visual recog-

nition models. The state-of-the-art HOI detection model

achieves only 62% accuracy on few-shot binary prediction

while even amateur human testers on MTurk have 91% accu-

racy. With the Bongard-HOI benchmark, we hope to further

advance research efforts in visual reasoning, especially in

holistic perception-reasoning systems and better representa-

tion learning.

1. Introduction

In recent years, great strides have been made on vi-

sual recognition benchmarks, such as ImageNet [8] and

COCO [33]. Nonetheless, there remains a considerable gap

between machine-level pattern recognition and human-level

cognitive reasoning. Current image understanding models

typically require a large amount of training data yet struggle

*First two authors contributed equally.

positive examples negative examples

ride bicycle !ride bicycle

Query images:

Labels: positive negative

Figure 1. Illustration of a few-shot learning instance from our

Bongard-HOI benchmark. The positive images in the top left

part follow the visual relationship of riding a bike between the

person and objects while such a relationship does not exist in the

negative examples. Note that an actual problem in Bongard-HOI

contains 6 images of positive examples, 6 negative examples, and 1

query image, which is different from the illustration here.

to generalize beyond the visual concepts seen during training.

In contrast, humans can reason about new visual concepts

in a compositional manner from just a few examples [21].

To march towards human-level visual cognition, we need to

depart from conventional benchmarks on closed-vocabulary

recognition tasks and aim to systematically examine compo-

sitional and few-shot learning of novel visual concepts.

While existing benchmarks such as miniImageNet [46],

Meta-Dataset [44], and ORBIT [44] have been dedicated

to studying few-shot visual learning, they focus on recog-

https://github.com/nvlabs/Bongard-HOI/


actions with dogs

actions with oranges

Figure 2. Examples of different actions with the same object.

From top to bottom, left to right: washing, walking, and feeding

dogs; eating, squeezing, and peeling oranges. To differentiate these

images, we need compositional understanding on both the actions

and the objects. We exploit this to select hard negatives in Bongard-

HOI: negative images contain the same object as the positives, but

the actions are different.

nizing object categories instead of the compositional struc-

tures of visual concepts, e.g., visual relationships. A par-

allel line of research aims at building benchmarks for ab-

stract reasoning by taking inspiration from cognitive science

such as RPM (Raven-style Progressive Matrices) [2, 43] and

Bongard-LOGO [3, 32]. In these benchmarks, a model has

to learn concept induction rules from a few examples and

the concepts are context-dependent in each task. However,

they use simple synthetic images [2, 32] or focus on basic

object-level properties, such as shapes and categories [43].

Our new benchmark: In this paper, we introduce Bongard-

HOI, a new benchmark for compositional visual reasoning

with natural images. It studies human-object interactions

(HOIs) as the visual concepts, requiring explicit composi-

tional reasoning of object-level concepts. Our Bongard-HOI

benchmark inherits two important characteristics of the clas-

sic Bongard problems (BPs) [3]: 1) few-shot binary predic-

tion, where a visual concept needs to be induced from just six

positive and six negative examples and 2) context-dependent

reasoning, where the label of an image may be interpreted

differently under different contexts.

Furthermore, Bongard-HOI upgrades the original BPs

from synthetic graphics to natural images. Our benchmark

contains rich visual stimuli featuring large intra-class vari-

ance, cluttered background, diverse scene layouts, etc. In

Bongard-HOI, a single few-shot binary prediction instance,

referred to as BP, contains a set of six positive images and

a set of six negative images, along with query images (see

Fig. 1 for examples). The task is making binary predictions

on the query images.

We construct the few-shot instances in Bongard-HOI on

top of the HAKE dataset [23, 24]. To encourage the explicit

reasoning of visual relationships, we use hard negatives to

construct few-shot instances. The hard negatives consist of

negatives that contain objects from the same categories as

those contained in the positive sets but with different ac-

tion labels. Fig. 2 presents some examples of these images.

Since both positive and negative examples contain object

instances from the same categories, mere recognition of ob-

ject categories is insufficient to complete the tasks. Rather,

reasoning about visual relationships between person and ob-

jects is required to solve these few-shot binary prediction

problems. The existence of such hard negatives distinguishes

our benchmark from existing visual abstract reasoning coun-

terparts [2, 32, 43]. Comparisons with different benchmarks

can be found in Table 1.

We carefully curate the annotations in HAKE when con-

structing the few-shot instances. Recall the visual concept

contained in the positive images should not appear in any

of the negative ones. Thus, we have to carefully select the

images in both sets. We employ high-quality annotators

from the Amazon Mechanical Turk platform to curate the

test set to further remove ambiguously and wrongly labeled

few-shot instances. In this process, 2.5% of the few-shot

instances in the test set are discarded. We end up with 23K

and 15K few-shot instances in disjoint training and test sets,

respectively.

An important goal of the Bongard-HOI benchmark is to

systematically study the generalization of machine learning

models for real-world visual relationship reasoning. To this

end, we introduce four separate test sets to investigate dif-

ferent types of generalization, depending on whether the

action and object classes are seen in the training set. Fig. 3

illustrates their design. This way, we have full control of the

overlap between the concepts (i.e., HOIs) between training

and test of few-shot instances. It enables us to carefully ex-

amine the generalization of visual learning models. Ideally,

a learning model should be able to generalize beyond the

concepts it has seen during training. Even for unseen HOI

concepts, the model should be able to learn how to induce

the underlying visual relationship from just a few examples.

Establishing baselines: In our experiments, we first ex-

amine the state-of-the-art HOI detection models’ perfor-

mance on this new task, we trained an oracle model with

HOITrans [52] on all the HOI categories, including those

in the test sets of our Bongard-HOI benchmark, and output

binary prediction on the query image via a majority vote

based on HOI detections. Its accuracy is only 62.46% (with

a chance performance of 50%), demonstrating the challenge

of our visual reasoning tasks. We then evaluate state-of-the-

art few-shot learning approaches, including non-episodic and

meta-learning methods. We show that the current learning

models struggle to solve the Bongard-HOI problems. Com-

pared to amateur human testers’ 91.42% overall accuracy,

who have access to a few examples of visual relationships

before working on solving our problems, the state-of-the-art
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Figure 3. Illustration of our four separate test sets for different types of generalization. We show a few HOI concepts in the training

and test sets in the top and bottom row, respectively. We use the red fonts to denote an object or action class that is available in the training

set and blue fonts indicate those held-on unseen ones in the test set.

few-shot learning model [6] only has 55.82% accuracy.

The results above lead to this question: why do they per-

form so poorly? To this end, we offer a detailed analysis of

the results and propose several conjectures. The first one is a

lack of holistic perception and reasoning systems, since mod-

els that have only good pattern recognition performances, e.g.

HOITrans, are likely to fail on our benchmarks. Moreover,

we believe there is a need for additional representation learn-

ing, e.g. pre-training, since currently we only train on binary

labels of few-shot instances. Nonetheless, we believe much

effort is still needed to further investigate the challenges

brought by our benchmark.

To sum up, this paper makes the following contributions:

• We introduce Bongard-HOI, a new benchmark for few-

shot visual reasoning with human-object interactions, aim-

ing at combining the best of few-shot learning, composi-

tional reasoning, and challenging real-world scenes.

• We carefully curate Bonagrd-HOI with hard negatives,

making mere recognition of object categories insufficient

to complete our tasks. We also introduce multiple test sets

to systematically study different types of generalization.

• We analyze state-of-the-art few-shot learning and HOI de-

tection methods. However, experimental results show their

inability on achieving good results on Bongard-HOI. Our

conjectures suggest future research in models with holistic

perception-reasoning systems and better representations.

2. Bongard-HOI Benchmark

For a few-shot binary prediction instance in Bonagrd-

HOI, it has a set of positive examples P , a set of negative

samples N , and a query image Iq. Images in P depict a

certain visual concept (e.g., ride bicycle in Fig. 1),

while images in N do not. In each task, there are only

six images in both P and N . As a result, a human tester

or machine learning model needs to induce the underlying

concept from just a few examples. Given the query image Iq ,

a binary prediction needs to be made: whether the certain

visual concept depicted in P is available in Iq or not. Later,

we will detail how to construct these few-shot instances.

2.1. Constructing Bongard Problems

Few-shot instances in Bongard-HOI are constructed with

natural images. We choose to use visual relationships as

underlying visual concepts. In our early experiments, we

also studied visual attributes to construct few-shot instances,

for example, color and shape of bird parts [47], facial at-

tributes [27]. But such visual attributes annotations either

require too much domain knowledge for human annotators

or are too noisy to curate. Another option we investigated

is scene graph [18], which is a combination of both visual

relationships and visual attributes. However, there could

be too many convoluted visual concepts in a single image,

resulting in ambiguous few-shot instances.

In this paper, we construct few-shot instances on top of

the HAKE dataset [23, 24] focusing on human-object inter-

actions. It provides unified annotations following the anno-

tation protocol in HICO [4] for a set of datasets widely used

for HOI detection, including HICO [4], V-COCO [10], Open-

Images [19], HCVRD [51], and PIC [25]. HAKE has 80

object categories, which are consistent with the vocabulary

defined in the standard COCO dataset [26]. It also has 117

action labels, leading to 600 human-object relationships1.

Denote a concept c = ⟨s, a, o⟩ as a visual relationship

triplet, where s, a, o are the class labels of subject, ac-

tion, and object, respectively. In this paper, s is always

person. We start with selecting a set of positive images

1Some combinations of objects and actions are infeasible.



Table 1. An overview of different benchmark datasets covering HOI detection, few-shot learning, and abstract visual reasoning. In

the first row, the abbreviation ctx denotes context; generalization types indicates if a benchmark includes multiple test splits to examine

different types of generalization. ∗We consider the concept of object counts as compositional while others such as object attributes and

categories not [43]).

concept
compositional natural few- ctx-dependent hard generalization

#concepts #tasks
concept image shot reasoning negatives types

HAKE [23, 24] HOI ✓ ✓ ✗ ✗ ✓ ✗ 600 122.6K

Omniglot [20] shape ✗ ✗ ✓ ✓ ✗ ✗ 50 1.62K

miniImageNet [46] image label ✗ ✓ ✗ ✓ ✗ ✗ 100 60K

Meta-Dataset [44] image label ✗ ✓ ✓ ✗ ✗ ✗ 4,934 52.8M

ORBIT [30] frame label ✗ ✓ ✓ ✗ ✗ ✗ 486 2.69M

RPM [2] shape ✗ ✗ ✓ ✓ ✗ ✓ 50 11.36M

V-PROM [43] attributes & counts ✓
∗

✓ ✓ ✓ ✗ ✓ 478 235K

Bongard-LOGO [32] shape ✗ ✗ ✓ ✓ ✗ ✓ 627 12K

Bongard-HOI (ours) HOI ✓ ✓ ✓ ✓ ✓ ✓ 242 53K

Ic = {I1, . . . } from HAKE that depict such a relationship.

We also need negative images, where the visual concept c is

not contained by them. In specific, we collect another set of

images Ic̄ with concept c̄ = ⟨s, ā, o⟩, where ā ̸= a, meaning

that we select hard negatives. As a result, images from both

Ic and Ic̄ contain the same categories of objects and the only

differences are the action labels, making it impossible to triv-

ially distinguish positive images from the negatives by doing

visual recognition of object categories only. Rather, detailed

visual reasoning about the interactions of human and objects

are desired. Fig. 2 illustrates the difficulties introduced by

the hard negatives. Finally, as an entire image may contain

multiple HOI instances, we use image regions (crops) around

each HOI instance instead of the original image to ensure

only a single HOI instance is presented in a single image.

Next, we need to sample few-shot instances from the pos-

itive images Ic and the negatives Ic̄. We randomly sample

images to form P , N , and a query image Iq . Two parameters

control the sampling process: M , the number of images in P
and N (M = 6 in Bongard-HOI), and the overlap threshold

τ , indicating the maximum number of overlapped images

between two few-shot instances. We want to sample as many

few-shot instances as possible, but we also need to avoid

significant image overlap between few-shot instances, which

limits the diversity of the data. We end up setting τ = 3 and

τ = 2 for training and test sets, respectively. More details

can be found in the supplementary material.

2.2. Data Curation

Although the HAKE dataset [23, 24] has provided high-

quality annotations, we found that curations are still needed

to construct few-shot instances. Recall, to sample negative

images, we assume a particular action is not depicted in them.

In HAKE, an image region may have multiple action labels.

Naively relying on the provided annotations is problematic

as the action labels are either not manually exclusive or not

exhaustively annotated. We hire high-quality testers on the

Amazon Mechanical Turk (MTurk) platform, who maintain a

good job approval record, to curate existing HOI annotations.

We discuss the data curation process in detail and show

visual examples in detail in the supplementary material.

After the aforementioned data curations, each image re-

gion is assigned to a single action label, describing the most

salient visual relationship. With the curated annotations, ac-

tion labels between a person and objects of a certain category

are mutually exclusive so that we can significantly reduce

the ambiguity when constructing few-shot instances. Finally,

we hire high-quality testers on the MTurk platform to further

remove the ambiguous few-shot instances in the test set. Ev-

ery single few-shot instance is assigned to three independent

testers. We compare their responses with the ground-truth

labels and discard about 2.5% few-shot instances where

none of the three testers correctly classifies the query im-

ages. In the end, we report the accuracy of human testers on

those left unambiguous few-shot instances as a human study

to examine human-level performance on our Bongard-HOI

benchmark, where the average accuracy is 91.42%.

2.3. Generalization Tests

Transferring the knowledge that an agent has seen and

learned is a hallmark of visual intelligence, which is a long-

stand goal for the entire AI community. It is also a core

focus of the Bongard-HOI benchmark. Following [2], we

provide multiple test splits to investigate different types of

generalization, aiming at a systematic understanding of how

the tested models generalize on our benchmark. Specifically,

the visual concept we consider in Bongard-HOI is an HOI

triplet ⟨s, a, o⟩ and we have two variables of freedom: action

a and object o. Therefore, by controlling whether an action

or object is seen during training, we can study generalization

to unseen actions, unseen objects, or a combination of two.

We end up introducing four separate test sets, as shown in

Fig. 3. We provide detailed statistics on our training and test

sets in the supplementary material.



Ideally, after learning from examples of sit_on bed,

a machine learning model can quickly grasp the concept

sit_on bench. More importantly, such a model should

learn how to learn from just a few examples, so that they can

still induce the correct concept (visual relationship) in the

most challenging cases, where both actions and objects are

not seen during training (e.g., shear sheep).

3. Possible Models for Bongard-HOI

There are many possible ways of tackling Bongard-HOI,

such as few-shot learning, conventional HOI detection, etc.

We are particularly interested in investigating few-shot learn-

ing methods, as our benchmark requires the learner to iden-

tify the visual concept with very few samples (positive and

negative images in P and N , respectively). To further im-

prove the few-shot learning methods, we consider encoding

the images with Relation Network [40], aiming at better

compositionality in the learned representations. Finally, we

introduce an oracle model to testify whether Bongard-HOI

can be trivially solved using state-of-the-art HOI detection

models.

3.1. Few­shot Learning in Bongard­HOI

We start with a formal definition of the few-shot learn-

ing problem in Bongard-HOI. Specifically, each task in-

cludes multiple few-shot instance with N = 2 classes

and 2M samples, i.e., the model learns from a training set

S = P∪N = {(IP1 , 1), . . . , (IPM , 1), (IN1 , 0), . . . , (INM , 0)}
and is evaluated on a query image (Iq, yq). Each example

(I, y) includes an image I ∈ R
H×W×3 and a class label

y ∈ {0, 1}, indicating whether I contains the visual con-

cepts depicted in P . In Bonagrd-HOI, we set M = 6 as

our default parameter and therefore each few-shot instance

is “2-way, 6-shot”. Following [44], we propose to solve

these few-shot prediction instances with the following two

families of approaches:

Non-episodic methods. In these methods, a simple classi-

fier is trained to map all the images in a few-shot instance

(including images in P , N , and the query image) to the

class of the query. The classifier can be parameterized as a

neural network over some learned image embeddings, i.e.

representations produced by convolutional neural networks

(CNNs). In other words, we view each few-shot instance as a

single training sample (
⋃2M+1

i=1 Ii, yq) rather than a few-shot

instance with multiple training samples (I, y). Our experi-

ments cover two different ways to encode the images: CNN

and Wide Relational Network (WReN) [2, 32].

Meta-learning methods. These methods adopt the episodic

learning setting, i.e., they learn to train a classifier using

2M samples from S and evaluate their trained classifier on

the query (Iq, yq). In general, their objective (also called

meta-objective) is to minimize the prediction error on the

query. Different meta-learning methods have their own ways

Figure 4. Class-agnostic (objectness) detections. We show the

detections from our class-agonostic detector (in green) and ground-

truth human and object boxes (in red).

to build the classifier and optimize the meta-objective. In our

experiments, we consider the following state-of-the-art meth-

ods: 1) ProtoNet [42], a metric-based method; 2) MetaOpt-

Net [22] and ANIL [34], two optimization-based approaches.

Moreover, we also use a strong baseline meta-learning model,

Meta-Baseline [6], which reports competitive results in many

few-shot prediction tasks. We refer readers to the related

papers for more details.

3.1.1 Image Encoding with Relational Network

As mentioned above, representation learning of the input

images can be crucial to the success of few-shot learning

methods on Bongard-HOI. As our benchmark demands learn-

ing compostional concepts (HOIs), simply feeding an image

into a Convolutional Neural Network (CNN) is not optimal.

To this end, we propose to use the Relational Network [40],

which shows promising compositional reasoning accuracy

on a Visual Question Answering (VQA) benchmark [15],

to explicitly encode the compositionality of visual relation-

ships. In specific, the feature representations of the image I

is computed as

RN(I) = fφ ◦
∑

i,j

gψ (concat(hθ(oi, I), hθ(oj , I))) ,

where oi and oj are two detected objects of the image I ,

provided by ground truth object annotations or a pre-trained

object detector like Faster R-CNN [37]. hθ denotes the

RoI Pooled features of oi from a ResNet backbone [11]

followed by a MLP (multi-layer perceptron) [37], which is

parameterized by θ. gψ and fφ are two additional MLPs.

A challenge we are facing is the unseen object categories

in the test sets. Since the object detector has to be pre-trained

on a dataset without the unseen object categories, it is likely

to fail on our test set where images could contain objects

belonging to these categories. To tackle this issue, we train a

binary class-agnostic (objectness) detection model instead

to get oi and oj . Class-agnostic object detections are shown

in Fig. 4. As we can see, all objects of interest have been

successfully detected. But at the same time, there are a lot

of other distracting ones, such as the bench and the wagon

in the left image of Fig. 4. This is a unique challenge of

dealing with visual reasoning over real-world images. We

devote discussions to it in the experiment section.



3.2. Oracle

One may wonder if our Bongard-HOI benchmark could

be trivially solved using the state-of-the-art HOI detection

model. To address this concern, we develop an oracle model

resorting to the HOITrans [52], which is based on the Trans-

former model [45] and reports state-of-the-art accuracy on

the HICO [4] and V-COCO [10] benchmarks. In specific,

let’s denote the HOI detections in the P and N as DP and

DN , respectively. DP contains the detections from all of

the images in the P , defined as DP = {cPi }
NP

i=1, where cPi
is a HOI triplet introduced in Section 2.1. NP is the total

number of detections. Note that there may be multiple or

no detections for a single image. Similarly, DN is defined

as DN = {cNi }NN

i=1. According to the property of Bongard-

HOI, the visual concept cP should only appear in the P , not

in the N . We, therefore, compute cP as

cP = majority_vote(DP −DN ),

where − is the set operator for set subtraction. Here we first

exclude the HOIs detected in N from DP , then the majority

of the remaining HOIs will be viewed as the visual concept

cP . Given the detections Dq = {cqi }
Nq

i=1 for the query image

Iq , our prediction y becomes

y =

{

1, if cP ∈ Dq,

0, otherwise.
Discussions of how to deal with the corner cases, e.g.,

majority_vote returns more than 1 concept, Dq is

empty, etc, are provided in the supplementary material. We

illustrate how this model works in Fig. 5, where we show

HOI detections in each image.

We call it our oracle model as it has privileged infor-

mation, i.e., the entire HOI action & object vocabulary, in-

cluding those held-out ones in the test set. As we shall we

in Section 4, such an oracle model still struggles on our

Bongard-HOI benchmark, achieving only 62.46% accuracy

on average, which is far below the human-level performance

of 91.42%. It suggests that our Bongard-HOI benchmark is

not trivial to solve.

4. Experiments

4.1. Implementation Details

We benchmark the models introduced in Section 3 on

Bongard-HOI to test their performance on human-level few-

shot visual reasoning. We use a ResNet50 [11] as an encoder

for the input images. We consider different pre-training

strategies: 1) no pre-training at all (scratch), 2) pre-trained

on the ImageNet dataset with manual labels [8], and 3) lat-

est self-supervised approach [5] pre-trained on ImageNet

but without manual labels. We train an Faster R-CNN [37]

class-agnostic objectness detection model on the COCO

dataset [33] using a ResNet101 [11] pre-trained on Ima-

geNet [8] as the backbone. We use the RoIPool opera-

tion [37] to get feature representations for each bounding

P N

Query images:

Predictions: positive negative
Figure 5. Illustration of our oracle model. We first generate

some detections for all the images using HOITrans [52]. Note that

some images may not have any detection at all. According to the

detections in the P and N , the common concept is eat donut.

As a result, in the bottom row, the first query image is considered to

be positive as its HOI detections contain eat donat. The second

query image is negative. Zoom in for the best view.

box. We also use ground-truth bounding boxes provided

in HAKE [23] as input to diagnose the effectiveness of the

visual perception. In addition to RoIPooled region features,

we also concatenate each bounding box’s normalized co-

ordinates (center and spatial dimensions) as spatial infor-

mation to the Relational Network encoder introduced in

Section 3.1.1.

4.2. Quantitative Results

The quantitative results of different models on our

Bongard-HOI benchmark can be found in Table 2. We

make the following observations: First of all, despite the

overall difficulties brought by our benchmarks, most models

perform worse on the challenging test splits, where actions

and/or object categories are completely unseen during train-

ing. This observation aligns well with our hypothesis, i.e.

existing machine learning approaches can be limited in terms

of generalizing beyond training concepts. It also echos the

findings in Bongard-LOGO [32], a dataset studying a similar

problem with synthetic images. Second, meta-learning ap-

proaches generally tend to perform better than non-episodic

counterparts, which can be on par with or even worse than

random guesses (50% chance). We hypothesize the reason

to be the focus on learning to learn in these methods, which

is essentially required to solve the few-shot instances in

the Bongard-HOI benchmark, especially for the challenging

test splits with novel categories. Similar observations have

also been made in Bongard-LOGO. Moreover, some meta-

learning models are distracted by bounding boxes provided



Table 2. Quantitative results on the Bongard-HOI benchmark. All the models use a ResNet50 as the image encoder. For the input of

bounding boxes (bbox), we consider two options: from an object detection model (det) and ground-truth annotations (gt). For the ResNet50

encoder, we experiment with different pre-training strategies: no pre-training at all (scratch), pre-trained on the ImageNet dataset with

manual labels (IN), and state-of-the-art self-supervised approach MoCoV2 [5]. (* denotes that we are unable to get meaningful results; #

indicates that the trained model has a run-time error during the inference stage since the condition of the QP solver can not be satisfied).

bbox pre-train

test set

avg.
seen act., seen act., unseen act., unseen act.,

seen obj. unseen obj. seen obj. unseen obj.

CNN-Baseline [32] - scratch 50.03 49.89 49.77 50.01 49.92

WReN-BP [2, 32] - IN 50.31 49.72 49.97 49.01 49.75

ProtoNet* [42] det IN - - - - -

ProtoNet [42] gt IN 58.90 58.77 57.11 58.34 58.28

MetaOptNet# [22] det IN - - - - -

MetaOptNet [22] gt IN 58.60 58.28 58.39 56.59 57.97

ANIL [34] det IN 50.18 50.13 49.81 48.83 49.74

ANIL [34] gt IN 52.73 50.11 49.55 48.19 50.15

Meta-Baseline [6] det scratch 54.61 53.79 54.58 53.94 54.23

Meta-Baseline [6] det MoCoV2 55.23 54.54 54.32 53.11 54.30

Meta-Baseline [6] det IN 56.45 56.02 55.60 55.21 55.82

Meta-Baseline [6] gt IN 58.82 58.75 58.56 57.04 58.30

HOITrans [52] (oracle) - - 59.50 64.38 63.10 62.87 62.46

Human (Amateur) - - 87.21 90.01 93.61 94.85 91.42

by an object detection model. We will discuss this issue in

the next section.

Surprisingly, the oracle model (HOITrans) also struggles

on our tests with an averaged accuracy of 62.46%, albeit be-

ing trained with direct HOI supervision and all action&object

categories. It suggests a clear gap between the existing HOI

detection datasets, e.g. HAKE [23] and Bongard-HOI, where

the latter one requires capabilities beyond perception, e.g.

HOI recognition. Rather, a model might also need context-

dependent reasoning, learning-to-learn from very few exam-

ples, etc., to perform well on our benchmarks.

Finally, machine learning models still largely fall behind

amateur human testers (e.g., 55.82% of Meta-Baseline vs

91.42%). While we only give human testers a couple of

examples about visual relationships before they start work-

ing on solving Bongard-HOI, they can quickly learn how

to induce visual relationships from just a few examples, re-

porting an average 91.42% accuracy on our Bongard-HOI

benchmark. Particularly, there are no significant differences

for the different subsets of the test set. We hope our findings

will foster more research efforts on closing this gap.

4.3. Discussions

We need holistic perception and reasoning. Our work

suggests that the significant challenges in current visual rea-

soning systems lie in both the reliability of perception and

the intricacy of the reasoning task itself. Models that have

only good pattern recognition performances are likely to

fail on our benchmarks. Rather, an ideal learner needs to

integrate visual perception in natural scenes and detailed cog-

nitive reasoning as a whole. This marks our key motivation

to propose Bongard-HOI as the first step towards studying

these two problems holistically.

Pre-training improves performances. Intuitively, models

for Bongard-HOI might need additional representation learn-

ing, e.g. pre-training, since currently we only train on binary

labels of few-shot instances. We can see from Table 2 that

pre-training is very helpful. Compared to no pre-training,

using either manual labels or self-supervision leads to a

performance boost. In particular, the self-supervised pre-

training [5] does not use any manual labels for supervision.

Yet it can produce better results than learning from scratch.

Visual perception matters in Bongard-HOI. Finally, an

imperfect perception could still be a major obstacle here.

Different from Bongard-LOGO [32] which uses synthetic

shapes instead, Bongard-HOI studies visual reasoning on

natural scenes, which often contain rich visual stimuli, is-

suing such as large intra-class variance and cluttered back-

ground also present challenges to reliable visual perception

on which reasoning is based. In our case, bounding boxes

produced by an object detection model can be inevitably

noisy. Some meta-learning models, including ProtoNet [42],

have difficulties inducing the true visual relationships. For

MetaOptNet [22], although we can finish training, we con-

stantly encounter run-time errors where the condition of the



QP solver is not satisfied during the inference stage. Instead,

when taking clean ground-truth bounding boxes as input, all

of these approaches produce better accuracy. Note that using

ground-truth bounding boxes only serves as an oracle, which

does not indicate the models’ authentic performance.

5. Related Work

Visual relationship detection benchmarks. Various

benchmarks are also dedicated for visual relationship recog-

nition and detection, particularly for human-centric relation-

ships (i.e., HOI). In the seminal work of Visual Genome [18],

scene graph annotations, including relationships of differ-

ent objects, are provided. A subset of the annotations is

used in VRD [28] to focus on visual relationship detection.

In a recent effort, large-scale visual relationships are pro-

vided in the Open Images dataset [19]. HOI, is of particular

interest to understand the interactions of humans and other

objects. A lot of HOI benchmarks, such as HICO [4], COCO-

a [38], vCOCO [10], and HOI-COCO [13], are built on top

of the object categories provided in the COCO dataset [26].

The MECCANO [35] dataset focuses on human-object in-

teractions in egocentric settings and industrial scenarios.

Ambiguous-HOI [24] is part of the HAKE project [23],

where the focus is human activity understanding with a large-

scale knowledge base and visual reasoning.

Although our Bongard-HOI benchmark is built on top of

the dataset HAKE [23], it differs from the existing visual

relationship and HOI benchmarks, since we focus on human-

level cognitive reasoning instead of recognition. To solve

Bongard-HOI, one might not need to explicitly name the

underlying visual relationship but does need to induce the

HOI from a few images and perform context-dependent

reasoning. Our results also suggest that Bongard-HOI cannot

be trivially solved by the state-of-the-art models on these

datasets, e.g. HOITrans [52].

Few-shot and meta learning models. Few-shot learn-

ing aims at learning from a limited number of training

samples [9, 17]. With the goal of extracting the generic

knowledge across tasks and generalizing to a new task us-

ing task-specific information, meta-learning (or learning-

to-learn) [12] becomes one of the leading approaches to

deal with the few-shot learning problems. In general,

meta-learning methods are divided into three categories: 1)

memory-based methods, such as MANN [39] and SNAIL

[31], 2) metric-based methods, such as Matching Net-

works [46] and ProtoNet [42], and 3) optimization-based

methods, such as MetaOptNet [22] and ANIL [34].

These meta-learning methods have been evaluated on sev-

eral commonly used few-shot learning benchmarks, includ-

ing miniImageNet [46] and tieredImageNet [36]. Although

state-of-the-art meta-learning algorithms have achieved ex-

cellent performance on these standard few-shot image clas-

sification benchmarks, whether these approaches can gen-

eralize to tasks where the concepts to learn (in a few-shot

manner) are compositional, e.g. visual relationships rather

than simple object categories is unknown [14, 16]. In other

words, existing benchmarks fail to account for the challeng-

ing problem of generalizing to new compositional concepts

in few-shot learning. Therefore, with a focus on the more

challenging visual concepts of visual relationships, we pro-

pose Bongard-HOI to serve as a new benchmark for the few-

shot learning methods. We believe that our benchmark can

foster the development of new few-shot learning, especially

meta-learning algorithms to achieve better performances on

learning and generalizing with compositional concepts.

Abstract visual reasoning benchmarks. Inspired by cog-

nitive studies, several benchmarks have been built for ab-

stract reasoning, highlighting cognitive abstract reasoning.

Notable examples include compositional question answer-

ing [15, 29], physical reasoning [1, 50], math problems [41],

and general artificial intelligence [7, 49]. The most relevant

to our benchmark are RPM [2], its variant with natural im-

ages [43], and Bongard problems with synthetic shapes [32]

and physical problems [48]. While most of them consider

synthetic images [2, 32, 48], our Bongard-HOI benchmark

studies cognitive reasoning on natural images, which impose

unique challenges due to the difficulty of visual perception.

Moreover, we use human-object interaction as the underlying

concepts to construct few-shot instances, which require ex-

plicit compositional concept learning in a few-shot manner,

compared to the object categories and shapes [43]. More-

over, the existence of hard negatives in the few-shot instances

makes our benchmark more challenging.

6. Conclusion

In this paper, we introduced the Bongard-HOI benchmark

focusing on the few-shot learning and the generalization

with compositional concepts in real-world visual relation-

ship reasoning. Drawing inspirations from the classic Bon-

gard problems [3], we constructed few-shot instances us-

ing the visual relationships between humans and objects as

the underlying concepts. Our benchmark is built on top of

an existing HOI dataset, HAKE [23], where we carefully

curated the provided annotations to construct the few-shot

instances. We benchmarked state-of-the-art few-shot learn-

ing methods, including both non-episodic and meta-learning

approaches. Our findings suggested that current machine

learning models still struggle to generalize beyond concepts

that they have seen during the training process. Moreover,

natural images in our benchmark contain rich stimuli, impos-

ing great challenges to the machine learning models in the

real-world visual relationship reasoning tasks. By building

the Bongard-HOI benchmark, we hope to foster research

efforts in real-world visual relationship reasoning, especially

in holistic perception-reasoning systems and better represen-

tation learning.
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