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Background

Real/Fake

e GANs can be formulated as a minimax game
m(;nmax f(p,0)

f(#,0) = Earp, [91(Do(2))] + Eznpy [92(Do(Gs(2)))]

e Updates via simultaneous gradient descent (SimGD)
o*HD = oM — 7, (6, 6M)
O*+D = 9F) L vy f (o) 9R))

e Still an open question to understand training dynamics of GANs

o  Global convergence analysis in general impossible without convex-

concave assumption [Nowozin et al., 2016; Yadav et al., 2018; Gidel et al., 2019] i!ﬁﬂ"ﬂgﬁgl

e . JdEGEEESRSn
o Necessary to analyze local convergence near equilibrium [Nagarajan and

Kolter, 2017; Mescheder et al., 2018; Liang and Stokes, 2019] GAN framework



A Simple GAN Example

A linear GAN: Transform latent Gaussian z ~ N (0, 021) to real Gaussian = ~ N (v, 021)

f(¢7 0) = ]E'$~N(v,021) [gl (HTx)] + ]EzNN(O,a2I) [92 (HT (qb + Z))]

A
With parametrization © = (¢ — v, 9>, the equilibrium point is w* =0

By definition, the Jacobian of SimGD in the example:

V2 fw®Y w2, (k) .
A(w®) = ng?‘{fu(’f))) Vg(:?‘{z(u(k))) Not symmetric!

Eigenvalues of the Jacobian:

Theorem 1. For any point within Bs(w*), the Ja-

cobian A in the simple vanilla GAN example trained

via SimGD has the following eigenvalues: )\ 2(A) = PrOpertie§ Of- the.eigenvalues depend
ot \{4(02)2_4 and N 4(A) = —,62:i;\{4(52)2—4 on data distribution parameters: (v, o)

57 £ 0% 1 o]

where




A Simple GAN Example (cont.)

e The local convergence behavior

Our analysis is divided into two cases: Complex or real eigenvalues

Complex eigenvalues Real eigenvalues
Corollary 1. 7o ensure non-asymptotic local conver- Corollary 2. To ensure non-asymptotic local conver-
gence, the step size should satisfy 0 < n < \/1[17- The gence, the step size should also satisfy 0 < n < \/— For
number of iterations to achieve an e-error solution satis- T > 2, the number of iterations N to achieve an e-error
Co . : log .
fies N > 102g1(01g4—+—1) where Cy is a constant. Specifically, solution satisfies N > 3 (101 ) where (' is a constant.
¢z .
as ¢ — oo, N will be at leastlO (¢(*log 1) Specifically, as T — o0, N will be at least|O(7 log %)
b € *
Training steps for convergence increases Training steps for convergence increases linearly

quadratically with the imaginary-to-real ratio () with the condition number ()



A Simple GAN Example (cont.)

e Main results

There may exist the following two factors of the Jacobian in GANs simultaneously that result in
the GAN training issues:

e Phase Factor: The Jacobian A has complex eigen-
values with a large imaginary-to-real ratio, which
has also been reported in Mescheder et al. (2017).

e Conditioning Factor: The Jacobian A is ill-
conditioned, i.e., the largest absolute value of its
eigenvalues is much larger than the smallest one.

In the simple GAN example, we can show

the data distribution parameters (v, o) controls the impact of two factors

and both should not be too small or too large, a relatively strict requirement for local convergence.




The Proposed Method - JARE

The G and D updates regularized via JARE are

]_ 2
p*+D = o*) v f(w®)| — 5MVo HVaf(w(’“))H

1 2
0 =0 + Vo f(w) 1= 511V HWf(w(k))H

Eigenvalues of the regularized Jacobian:

Theorem 3. For any point within Bs(w™*), the
Jacobian A in the simple vanilla GAN example
trained via JARE has the following eigenvalues:

)\172@4) _ —(o +7)i\/(22+7) —(v24+4) and )\374(14) _

_(R2 2 2_(~2
(EANEVE V=G oy 52 2 62 4 o2

Asymptotically as v — oo, we get|¢ — Oland |7 — 1].

The hyperparameter Y controls
the regularization terms

Properties of the eigenvalues now
depend on the hyperparameter 7y

No complex eigenvalues well-conditioned



Extensions to General GANs

Two assumptions [Nagarajan and Kolter, 2017; Mescheder et al., 2018]

Assumption 1. In equilibrium, the optimal generated
distribution satisfies py+~ = p,., and the optimal discrimi-
nator satisfies Dy~ (x) = 0 for the local neighborhood of
any x € X.

Assumption 2. The two concave functions g, and go sat-
isfy 91 (0) + 95(0) < 0and g1(0) = —g5(0) # 0.

Jacobian of general GANs via SimGD

Lemma 3. For an equilibrium point (¢*, 6*) satisfying
Assumptions 1 and 2, the Jacobian A in general GANs
trained via SimGD can be written in the form

0 -P
where P € R™*™ and Q € R™*"™ are given by

P =g5(0)E.np, [V$Gs(2) Vg Do ()] |sc, (2)
Q =(97(0) + g5 (0))Eqn p, [Vo Dy () Ve Dg(z)"]

€))

Make sure it is the optimal
equilibrium point

Avoid trivial solutions

P represents how sensitive D is to local
updates of G

Q represents the local geometry of D
(just like Fisher Information)



Extensions to General GANs (cont.)

Eigenvalues of Jacobian via SimGD

Theorem 4. For the equilibrium point (¢*, 0*) satisfying
Assumptions 1 and 2, the eigenvalues of the Jacobian A
in general GANs trained via SimGD can be written in the
form

a; + /a? — 4as
2

ANA) = (10)

where a1 and ay are certain convex combinations of the
eigenvalues of Q and PT P, respectively. That is,

m

a; = ZOQ)\Z(Q), ag = Z&ZAZ(PTP) (11)
=1

=1

for some coefficients a; > Owith " | a; = 1 and some
coefficients &; > Owith y* | &; = 1.

By analysis, we require
Q and PTP

e both are well-conditioned (which
requires good G and D architectures)

e have similar eigenvalues (which
requires D to well match G)

to avoid the above two factors: Phase and
Conditioning Factor



Extensions to General GANs (cont.)

Eigenvalues of Regularized Jacobian via JARE

Theorem 5. For the equilibrium point (¢*, 0*) satisfying
Assumptions 1 and 2, the eigenvalues of the Jacobian A
in general GANs trained via JARE satisfy that in the limit
v — 09,

A(A) = —A(PTP) (12)

The imbalance between eigenvalues of
Q and PTP

will not be an issue in general GANs via JARE

In summary, we compare SimGD and JARE in terms of ensuring good (local) training dynamics

Requirements stable SimGD  stable JARE

@ is well-conditioned
PT P is well-conditioned
Q) matches PT P

v
v v
v

JARE could be easier to train, with better robustness than SimGD



Experiments

Synthetic Data - Isotropic Gaussians
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(a) Discriminator training curve

Training dynamics of SimGD, ConOpt (Mescheder et al., 2017) and JARE (Ours) in the simple vanilla GAN example

0 2000 4000 6000 8000 10000 12000 14000
Iterations

(b) Generator training curve

SimGD suffers from both Phase and Conditioning Factor
ConOpt suffers from Conditioning Factor

10



Experiments (cont.)

e Synthetic Data - Mixture of Gaussians

- - ~

(a) SimGD

(d) Ours (y = 10)

Comparison of SimGD, ConOpt (Mescheder et al., 2017) and JARE (Ours) on the mixture of Gaussians over iterations

Only SimGD oscillates among different modes and fails to converge
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Experiments (cont.)

CIFAR-10 (Inception Score: higher is better, FID: lower is better)
|
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Quantitative evaluation of GAN (Goodfellow et al., 2014), ConOpt (Mescheder et al., 2017), SN-GAN (Miyato et al.,
2018) and JARE (Ours) on CIFAR-10 with different network architectures A-F

JARE is more robust than previous methods across these different settings
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GAN

SN-GAN

ConOpt

Ours

Visually, JARE is able to generate good
samples across these different settings
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Any questions?
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